Communication
Faster access than browser!

# Parameterized complexity

In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input. [1]

## Circuit satisfiability problem

In theoretical computer science, the circuit satisfiability problem (also known as CIRCUIT-SAT, CircuitSAT, CSAT, etc.) is the decision problem of determining whether a given Boolean circuit has an assignment of its inputs that makes the output true.

## Clique (graph theory)

In the mathematical area of graph theory, a clique is subset of vertices of an undirected graph, such that its induced subgraph is complete; that is, every two distinct vertices in the clique are adjacent.

## Computational complexity theory

Computational complexity theory is a branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying computational problems according to their inherent difficulty, and relating those classes to each other.

## Computational problem

In theoretical computer science, a computational problem is a mathematical object representing a collection of questions that computers might be able to solve.

## Computer science

Computer science deals with the theoretical foundations of information and computation, together with practical techniques for the implementation and application of these foundations Computer science is the scientific and practical approach to computation and its applications.

## Dominating set

In graph theory, a dominating set for a graph G.

## Function (mathematics)

In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output.

## Graph coloring

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints.

## Independent set (graph theory)

In graph theory, an independent set or stable set is a set of vertices in a graph, no two of which are adjacent.

## Kernelization

In computer science, a kernelization is a technique for designing efficient algorithms that achieve their efficiency by a preprocessing stage in which inputs to the algorithm are replaced by a smaller input, called a "kernel".

## NP-completeness

In computational complexity theory, a decision problem is NP-complete when it is both in NP and NP-hard.

## NP-hardness

NP-hardness (''n''on-deterministic ''p''olynomial-time hard), in computational complexity theory, is a class of problems that are, informally, "at least as hard as the hardest problems in NP".

## P versus NP problem

The P versus NP problem is a major unsolved problem in computer science.

## Parameterized complexity

In computer science, parameterized complexity is a branch of computational complexity theory that focuses on classifying computational problems according to their inherent difficulty with respect to multiple parameters of the input.

## Polynomial-time approximation scheme

In computer science, a polynomial-time approximation scheme (PTAS) is a type of approximation algorithm for optimization problems (most often, NP-hard optimization problems).

## Reduction (complexity)

In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem.

## Satisfiability

In mathematical logic, satisfiability and validity are elementary concepts of semantics.

## Time complexity

In computer science, the time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the length of the string representing the input.

## Vertex cover

In the mathematical discipline of graph theory, a vertex cover (sometimes node cover) of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set.

## References

Hey! We are on Facebook now! »