14 relations: Asymptotic expansion, Borel summation, Divergent series, Exponential integral, Factorial, Grandi's series, Integration by parts, Leonhard Euler, Power series solution of differential equations, 1 + 1 + 1 + 1 + ⋯, 1 + 2 + 3 + 4 + ⋯, 1 + 2 + 4 + 8 + ⋯, 1 − 2 + 3 − 4 + ⋯, 1 − 2 + 4 − 8 + ⋯.

## Asymptotic expansion

In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Asymptotic expansion · See more »

## Borel summation

In mathematics, Borel summation is a summation method for divergent series, introduced by.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Borel summation · See more »

## Divergent series

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Divergent series · See more »

## Exponential integral

In mathematics, the exponential integral Ei is a special function on the complex plane.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Exponential integral · See more »

## Factorial

In mathematics, the factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, The value of 0! is 1, according to the convention for an empty product.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Factorial · See more »

## Grandi's series

In mathematics, the infinite series 1 - 1 + 1 - 1 + \dotsb, also written \sum_^ (-1)^n is sometimes called Grandi's series, after Italian mathematician, philosopher, and priest Guido Grandi, who gave a memorable treatment of the series in 1703.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Grandi's series · See more »

## Integration by parts

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of their derivative and antiderivative.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Integration by parts · See more »

## Leonhard Euler

Leonhard Euler (Swiss Standard German:; German Standard German:; 15 April 170718 September 1783) was a Swiss mathematician, physicist, astronomer, logician and engineer, who made important and influential discoveries in many branches of mathematics, such as infinitesimal calculus and graph theory, while also making pioneering contributions to several branches such as topology and analytic number theory.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Leonhard Euler · See more »

## Power series solution of differential equations

In mathematics, the power series method is used to seek a power series solution to certain differential equations.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and Power series solution of differential equations · See more »

## 1 + 1 + 1 + 1 + ⋯

In mathematics,, also written \sum_^ n^0, \sum_^ 1^n, or simply \sum_^ 1, is a divergent series, meaning that its sequence of partial sums does not converge to a limit in the real numbers.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and 1 + 1 + 1 + 1 + ⋯ · See more »

## 1 + 2 + 3 + 4 + ⋯

The infinite series whose terms are the natural numbers is a divergent series.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and 1 + 2 + 3 + 4 + ⋯ · See more »

## 1 + 2 + 4 + 8 + ⋯

In mathematics, is the infinite series whose terms are the successive powers of two.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and 1 + 2 + 4 + 8 + ⋯ · See more »

## 1 − 2 + 3 − 4 + ⋯

In mathematics, 1 − 2 + 3 − 4 + ··· is the infinite series whose terms are the successive positive integers, given alternating signs.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and 1 − 2 + 3 − 4 + ⋯ · See more »

## 1 − 2 + 4 − 8 + ⋯

In mathematics, is the infinite series whose terms are the successive powers of two with alternating signs.

New!!: 1 − 1 + 2 − 6 + 24 − 120 + ... and 1 − 2 + 4 − 8 + ⋯ · See more »

## Redirects here:

1 − 1 + 2 − 6 + 24 − 120 + · · ·, 1 − 1 + 2 − 6 + 24 − 120 + ⋯, 1-1+2-6+24-120+....

## References

[1] https://en.wikipedia.org/wiki/1_−_1_%2B_2_−_6_%2B_24_−_120_%2B_...