67 relations: Binomial coefficient, Bipyramid, Complete bipartite graph, Complex number, Compound of cube and octahedron, Convex hull, Convex polytope, Coxeter–Dynkin diagram, Dimension, Dual polyhedron, Edge (geometry), Emanuel Lodewijk Elte, Equidistant set, Equilateral dimension, Face (geometry), Facet (geometry), Geometry, Graph (discrete mathematics), Harold Scott MacDonald Coxeter, Hilbert space, Hypercube, Hypercubic honeycomb, Hyperoctahedral group, John Horton Conway, Line segment, List of regular polytopes and compounds, Lp space, Ludwig Schläfli, Multipartite graph, N-skeleton, Octagram, Octahedron, Orthant, Orthographic projection, Petrie polygon, Platonic solid, Polygon, Polyhedron, Polytope, Projection (linear algebra), Regular 4-polytope, Regular polygon, Regular polytope, Regular Polytopes (book), Schläfli symbol, Simplex, Square, Taxicab geometry, Turán graph, Uniform 10-polytope, ..., Uniform 7-polytope, Uniform 8-polytope, Uniform 9-polytope, Unit sphere, Vertex (geometry), Vertex figure, Zero-dimensional space, 10-orthoplex, 16-cell, 4-polytope, 5-orthoplex, 5-polytope, 6-orthoplex, 6-polytope, 7-orthoplex, 8-orthoplex, 9-orthoplex. Expand index (17 more) »

## Binomial coefficient

In mathematics, any of the positive integers that occurs as a coefficient in the binomial theorem is a binomial coefficient.

New!!: Cross-polytope and Binomial coefficient · See more »

## Bipyramid

An n-gonal bipyramid or dipyramid is a polyhedron formed by joining an n-gonal pyramid and its mirror image base-to-base.

New!!: Cross-polytope and Bipyramid · See more »

## Christmas

Christmas is an annual festival commemorating the birth of Jesus Christ,Martindale, Cyril Charles.

New!!: Cross-polytope and Christmas · See more »

## Christmas and holiday season

The Christmas season, also called the festive season, or the holiday season (mainly in the U.S. and Canada; often simply called the holidays),, is an annually recurring period recognized in many Western and Western-influenced countries that is generally considered to run from late November to early January.

New!!: Cross-polytope and Christmas and holiday season · See more »

## Christmas Eve

Christmas Eve is the evening or entire day before Christmas Day, the festival commemorating the birth of Jesus.

New!!: Cross-polytope and Christmas Eve · See more »

## Christmas traditions

Christmas traditions vary from country to country.

New!!: Cross-polytope and Christmas traditions · See more »

## Complete bipartite graph

No description.

New!!: Cross-polytope and Complete bipartite graph · See more »

## Complex number

A complex number is a number that can be expressed in the form, where and are real numbers, and is a solution of the equation.

New!!: Cross-polytope and Complex number · See more »

## Compound of cube and octahedron

This polyhedron can be seen as either a polyhedral stellation or a compound.

New!!: Cross-polytope and Compound of cube and octahedron · See more »

## Convex hull

In mathematics, the convex hull or convex envelope or convex closure of a set X of points in the Euclidean plane or in a Euclidean space (or, more generally, in an affine space over the reals) is the smallest convex set that contains X. For instance, when X is a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around X., p. 3.

New!!: Cross-polytope and Convex hull · See more »

## Convex polytope

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn.

New!!: Cross-polytope and Convex polytope · See more »

## Coxeter–Dynkin diagram

In geometry, a Coxeter–Dynkin diagram (or Coxeter diagram, Coxeter graph) is a graph with numerically labeled edges (called branches) representing the spatial relations between a collection of mirrors (or reflecting hyperplanes).

New!!: Cross-polytope and Coxeter–Dynkin diagram · See more »

## Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it.

New!!: Cross-polytope and Dimension · See more »

## Dual polyhedron

In geometry, any polyhedron is associated with a second dual figure, where the vertices of one correspond to the faces of the other and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other.

New!!: Cross-polytope and Dual polyhedron · See more »

## Edge (geometry)

In geometry, an edge is a particular type of line segment joining two vertices in a polygon, polyhedron, or higher-dimensional polytope.

New!!: Cross-polytope and Edge (geometry) · See more »

## Emanuel Lodewijk Elte

Emanuel Lodewijk Elte (16 March 1881 in Amsterdam – 9 April 1943 in Sobibór) at joodsmonument.nl was a Dutch mathematician.

New!!: Cross-polytope and Emanuel Lodewijk Elte · See more »

## Equidistant set

In mathematics, an equidistant set (also called a midset, or a bisector) is a set each of whose elements has the same distance (measured using some appropriate distance function) from two or more sets.

New!!: Cross-polytope and Equidistant set · See more »

## Equilateral dimension

In mathematics, the equilateral dimension of a metric space is the maximum number of points that are all at equal distances from each other.

New!!: Cross-polytope and Equilateral dimension · See more »

## Face (geometry)

In solid geometry, a face is a flat (planar) surface that forms part of the boundary of a solid object; a three-dimensional solid bounded exclusively by flat faces is a polyhedron.

New!!: Cross-polytope and Face (geometry) · See more »

## Facet (geometry)

In geometry, a facet is a feature of a polyhedron, polytope, or related geometric structure, generally of dimension one less than the structure itself.

New!!: Cross-polytope and Facet (geometry) · See more »

## Geometry

Geometry (from the γεωμετρία; geo- "earth", -metron "measurement") is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space.

New!!: Cross-polytope and Geometry · See more »

## Graph (discrete mathematics)

In mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related".

New!!: Cross-polytope and Graph (discrete mathematics) · See more »

## Harold Scott MacDonald Coxeter

Harold Scott MacDonald "Donald" Coxeter, FRS, FRSC, (February 9, 1907 – March 31, 2003) was a British-born Canadian geometer.

New!!: Cross-polytope and Harold Scott MacDonald Coxeter · See more »

## Hilbert space

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space.

New!!: Cross-polytope and Hilbert space · See more »

## Hypercube

In geometry, a hypercube is an ''n''-dimensional analogue of a square and a cube.

New!!: Cross-polytope and Hypercube · See more »

## Hypercubic honeycomb

In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensions with the Schläfli symbols and containing the symmetry of Coxeter group Rn (or B~n-1) for n>.

New!!: Cross-polytope and Hypercubic honeycomb · See more »

## Hyperoctahedral group

In mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope.

New!!: Cross-polytope and Hyperoctahedral group · See more »

## John Horton Conway

John Horton Conway FRS (born 26 December 1937) is an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory.

New!!: Cross-polytope and John Horton Conway · See more »

## Line segment

In geometry, a line segment is a part of a line that is bounded by two distinct end points, and contains every point on the line between its endpoints.

New!!: Cross-polytope and Line segment · See more »

## List of regular polytopes and compounds

This page lists the regular polytopes and regular polytope compounds in Euclidean, spherical and hyperbolic spaces.

New!!: Cross-polytope and List of regular polytopes and compounds · See more »

## Lp space

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the ''p''-norm for finite-dimensional vector spaces.

New!!: Cross-polytope and Lp space · See more »

## Ludwig Schläfli

Ludwig Schläfli (15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional spaces.

New!!: Cross-polytope and Ludwig Schläfli · See more »

## Multipartite graph

In graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are or can be partitioned into k different independent sets.

New!!: Cross-polytope and Multipartite graph · See more »

## N-skeleton

In mathematics, particularly in algebraic topology, the of a topological space X presented as a simplicial complex (resp. CW complex) refers to the subspace Xn that is the union of the simplices of X (resp. cells of X) of dimensions In other words, given an inductive definition of a complex, the is obtained by stopping at the.

New!!: Cross-polytope and N-skeleton · See more »

## New Year

New Year is the time or day at which a new calendar year begins and the calendar's year count increments by one.

New!!: Cross-polytope and New Year · See more »

## New Year's Day

New Year's Day, also called simply New Year's or New Year, is observed on January 1, the first day of the year on the modern Gregorian calendar as well as the Julian calendar.

New!!: Cross-polytope and New Year's Day · See more »

## New Year's Eve

In the Gregorian calendar, New Year's Eve (also known as Old Year's Day or Saint Sylvester's Day in many countries), the last day of the year, is on 31 December which is the seventh day of Christmastide.

New!!: Cross-polytope and New Year's Eve · See more »

## Octagram

In geometry, an octagram is an eight-angled star polygon.

New!!: Cross-polytope and Octagram · See more »

## Octahedron

In geometry, an octahedron (plural: octahedra) is a polyhedron with eight faces, twelve edges, and six vertices.

New!!: Cross-polytope and Octahedron · See more »

## Orthant

In geometry, an orthant or hyperoctant is the analogue in n-dimensional Euclidean space of a quadrant in the plane or an octant in three dimensions.

New!!: Cross-polytope and Orthant · See more »

## Orthographic projection

Orthographic projection (sometimes orthogonal projection), is a means of representing three-dimensional objects in two dimensions.

New!!: Cross-polytope and Orthographic projection · See more »

## Petrie polygon

In geometry, a Petrie polygon for a regular polytope of n dimensions is a skew polygon in which every (n – 1) consecutive sides (but no n) belongs to one of the facets.

New!!: Cross-polytope and Petrie polygon · See more »

## Platonic solid

In three-dimensional space, a Platonic solid is a regular, convex polyhedron.

New!!: Cross-polytope and Platonic solid · See more »

## Polygon

In elementary geometry, a polygon is a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed polygonal chain or circuit.

New!!: Cross-polytope and Polygon · See more »

## Polyhedron

In geometry, a polyhedron (plural polyhedra or polyhedrons) is a solid in three dimensions with flat polygonal faces, straight edges and sharp corners or vertices.

New!!: Cross-polytope and Polyhedron · See more »

## Polytope

In elementary geometry, a polytope is a geometric object with "flat" sides.

New!!: Cross-polytope and Polytope · See more »

## Projection (linear algebra)

In linear algebra and functional analysis, a projection is a linear transformation P from a vector space to itself such that.

New!!: Cross-polytope and Projection (linear algebra) · See more »

## Regular 4-polytope

In mathematics, a regular 4-polytope is a regular four-dimensional polytope.

New!!: Cross-polytope and Regular 4-polytope · See more »

## Regular polygon

In Euclidean geometry, a regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length).

New!!: Cross-polytope and Regular polygon · See more »

## Regular polytope

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry.

New!!: Cross-polytope and Regular polytope · See more »

## Regular Polytopes (book)

Regular Polytopes is a mathematical geometry book written by Canadian mathematician Harold Scott MacDonald Coxeter.

New!!: Cross-polytope and Regular Polytopes (book) · See more »

## Schläfli symbol

In geometry, the Schläfli symbol is a notation of the form that defines regular polytopes and tessellations.

New!!: Cross-polytope and Schläfli symbol · See more »

## Simplex

In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions.

New!!: Cross-polytope and Simplex · See more »

## Square

In geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, or (100-gradian angles or right angles). It can also be defined as a rectangle in which two adjacent sides have equal length. A square with vertices ABCD would be denoted.

New!!: Cross-polytope and Square · See more »

## Taxicab geometry

A taxicab geometry is a form of geometry in which the usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their Cartesian coordinates.

New!!: Cross-polytope and Taxicab geometry · See more »

## Turán graph

No description.

New!!: Cross-polytope and Turán graph · See more »

## Uniform 10-polytope

In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge.

New!!: Cross-polytope and Uniform 10-polytope · See more »

## Uniform 7-polytope

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets.

New!!: Cross-polytope and Uniform 7-polytope · See more »

## Uniform 8-polytope

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets.

New!!: Cross-polytope and Uniform 8-polytope · See more »

## Uniform 9-polytope

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets.

New!!: Cross-polytope and Uniform 9-polytope · See more »

## Unit sphere

In mathematics, a unit sphere is the set of points of distance 1 from a fixed central point, where a generalized concept of distance may be used; a closed unit ball is the set of points of distance less than or equal to 1 from a fixed central point.

New!!: Cross-polytope and Unit sphere · See more »

## Vertex (geometry)

In geometry, a vertex (plural: vertices or vertexes) is a point where two or more curves, lines, or edges meet.

New!!: Cross-polytope and Vertex (geometry) · See more »

## Vertex figure

In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.

New!!: Cross-polytope and Vertex figure · See more »

## Zero-dimensional space

In mathematics, a zero-dimensional topological space (or nildimensional) is a topological space that has dimension zero with respect to one of several inequivalent notions of assigning a dimension to a given topological space.

New!!: Cross-polytope and Zero-dimensional space · See more »

## 10-orthoplex

In geometry, a 10-orthoplex or 10-cross polytope, is a regular 10-polytope with 20 vertices, 180 edges, 960 triangle faces, 3360 octahedron cells, 8064 5-cells 4-faces, 13440 5-faces, 15360 6-faces, 11520 7-faces, 5120 8-faces, and 1024 9-faces.

New!!: Cross-polytope and 10-orthoplex · See more »

## 16-cell

In four-dimensional geometry, a 16-cell is a regular convex 4-polytope.

New!!: Cross-polytope and 16-cell · See more »

## 2018

2018 has been designated as the third International Year of the Reef by the International Coral Reef Initiative.

New!!: Cross-polytope and 2018 · See more »

## 2019

2019 (MMXIX) will be a common year starting on Tuesday of the Gregorian calendar, the 2019th year of the Common Era (CE) and Anno Domini (AD) designations, the 19th year of the 3rd millennium, the 19th year of the 21st century, and the 10th and last year of the 2010s decade.

New!!: Cross-polytope and 2019 · See more »

## 4-polytope

In geometry, a 4-polytope (sometimes also called a polychoron, polycell, or polyhedroid) is a four-dimensional polytope.

New!!: Cross-polytope and 4-polytope · See more »

## 5-orthoplex

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

New!!: Cross-polytope and 5-orthoplex · See more »

## 5-polytope

In five-dimensional geometry, a five-dimensional polytope or 5-polytope is a 5-dimensional polytope, bounded by (4-polytope) facets.

New!!: Cross-polytope and 5-polytope · See more »

## 6-orthoplex

In geometry, a 6-orthoplex, or 6-cross polytope, is a regular 6-polytope with 12 vertices, 60 edges, 160 triangle faces, 240 tetrahedron cells, 192 5-cell 4-faces, and 64 5-faces.

New!!: Cross-polytope and 6-orthoplex · See more »

## 6-polytope

In six-dimensional geometry, a six-dimensional polytope or 6-polytope is a polytope, bounded by 5-polytope facets.

New!!: Cross-polytope and 6-polytope · See more »

## 7-orthoplex

In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cells 4-faces, 448 5-faces, and 128 6-faces.

New!!: Cross-polytope and 7-orthoplex · See more »

## 8-orthoplex

In geometry, an 8-orthoplex or 8-cross polytope is a regular 8-polytope with 16 vertices, 112 edges, 448 triangle faces, 1120 tetrahedron cells, 1792 5-cells 4-faces, 1792 5-faces, 1024 6-faces, and 256 7-faces.

New!!: Cross-polytope and 8-orthoplex · See more »

## 9-orthoplex

In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells 4-faces, 5376 5-simplex 5-faces, 4608 6-simplex 6-faces, 2304 7-simplex 7-faces, and 512 8-simplex 8-faces.

New!!: Cross-polytope and 9-orthoplex · See more »

## Redirects here:

11-orthoplex, 12-orthoplex, Cocube, Cross polytope, Generalized cross polytope, Generalized orthoplex, Hyperoctahedron, Orthoplex.

## References

[1] https://en.wikipedia.org/wiki/Cross-polytope