160 relations: Abuse of notation, Addison-Wesley, Algebra, Algorithm, Analytic continuation, Analytic function, Antiderivative, Associative array, Associative property, Axiom of choice, Bijection, Binary operation, Binary relation, Branch point, Calculus, Cartesian coordinate system, Class (set theory), Commutative property, Compact space, Complex analysis, Complex number, Complex plane, Computability theory, Computable function, Constant function, Continuous function, Correspondence (mathematics), Curve fitting, D. C. Heath and Company, Derivative, Differentiable function, Differential equation, Direct product, Distribution (mathematics), Division by zero, Empty product, Empty set, Empty sum, Euclidean division, Euclidean space, Exponential function, Factorization, Fiber (mathematics), Fibonacci number, Foundations of mathematics, Function of a real variable, Function of several real variables, Functional (mathematics), Functional analysis, Functional decomposition, ..., Functional equation, Functional predicate, Functional programming, Functor, Gamma function, Graph of a function, Histogram, History of the function concept, Homography, Homomorphism, Hyperbola, Identity element, Identity function, Image (mathematics), Implicit function, Implicit function theorem, Inclusion map, Injective function, Integer, Integral equation, Interpunct, Intersection (set theory), Interval (mathematics), Inverse function, Inverse trigonometric functions, Italic type, John Wiley & Sons, Linear differential equation, Linear function, List of mathematical functions, List of types of functions, Manifold, Map (mathematics), Mathematical analysis, Mathematical induction, Mathematics, Meromorphic function, Monodromy, Monotonic function, Morphism, Natural logarithm, Natural number, Neighbourhood (mathematics), Nicolas Bourbaki, Number, Operation (mathematics), Operator (mathematics), Ordered pair, Ordinary differential equation, Parabola, Parameter, Parametric equation, Partial application, Partial differential equation, Piecewise, Placeholder name, Planet, Pointwise, Polynomial, Polynomial ring, Power set, Principal value, Projectively extended real line, Quadratic form, Quadratic function, Range (mathematics), Rational function, Real analysis, Real line, Real number, Real-valued function, Rectangle, Recursion, Restriction, Ring homomorphism, Roman type, Scalar field, Science, Sequence, Set (mathematics), Set theory, Set-builder notation, Several complex variables, Sine, Singleton (mathematics), Smoothness, Springer Science+Business Media, Square (algebra), Square root, Statistic, Subgroup, Subset, Support (mathematics), Surjective function, Topological vector space, Topology, Transformation (function), Trigonometric functions, Tuple, Union (set theory), University of Tennessee, Variable (mathematics), Vector field, Vector space, Vector-valued function, Vertical line test, Virginia Commonwealth University, Von Neumann–Bernays–Gödel set theory, Well-order, Zero of a function. Expand index (110 more) »

## Abuse of notation

In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not formally correct but that seems likely to simplify the exposition or suggest the correct intuition (while being unlikely to introduce errors or cause confusion).

New!!: Function (mathematics) and Abuse of notation · See more »

## Addison-Wesley

Addison-Wesley is a publisher of textbooks and computer literature.

New!!: Function (mathematics) and Addison-Wesley · See more »

## Algebra

Algebra (from Arabic "al-jabr", literally meaning "reunion of broken parts") is one of the broad parts of mathematics, together with number theory, geometry and analysis.

New!!: Function (mathematics) and Algebra · See more »

## Algorithm

In mathematics and computer science, an algorithm is an unambiguous specification of how to solve a class of problems.

New!!: Function (mathematics) and Algorithm · See more »

## Analytic continuation

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of a given analytic function.

New!!: Function (mathematics) and Analytic continuation · See more »

## Analytic function

In mathematics, an analytic function is a function that is locally given by a convergent power series.

New!!: Function (mathematics) and Analytic function · See more »

## Antiderivative

In calculus, an antiderivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function.

New!!: Function (mathematics) and Antiderivative · See more »

## Associative array

In computer science, an associative array, map, symbol table, or dictionary is an abstract data type composed of a collection of (key, value) pairs, such that each possible key appears at most once in the collection.

New!!: Function (mathematics) and Associative array · See more »

## Associative property

In mathematics, the associative property is a property of some binary operations.

New!!: Function (mathematics) and Associative property · See more »

## Axiom of choice

In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that the Cartesian product of a collection of non-empty sets is non-empty.

New!!: Function (mathematics) and Axiom of choice · See more »

## Bijection

In mathematics, a bijection, bijective function, or one-to-one correspondence is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set.

New!!: Function (mathematics) and Bijection · See more »

## Binary operation

In mathematics, a binary operation on a set is a calculation that combines two elements of the set (called operands) to produce another element of the set.

New!!: Function (mathematics) and Binary operation · See more »

## Binary relation

In mathematics, a binary relation on a set A is a set of ordered pairs of elements of A. In other words, it is a subset of the Cartesian product A2.

New!!: Function (mathematics) and Binary relation · See more »

## Branch point

In the mathematical field of complex analysis, a branch point of a multi-valued function (usually referred to as a "multifunction" in the context of complex analysis) is a point such that the function is discontinuous when going around an arbitrarily small circuit around this point.

New!!: Function (mathematics) and Branch point · See more »

## Calculus

Calculus (from Latin calculus, literally 'small pebble', used for counting and calculations, as on an abacus), is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.

New!!: Function (mathematics) and Calculus · See more »

## Cartesian coordinate system

A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular directed lines, measured in the same unit of length.

New!!: Function (mathematics) and Cartesian coordinate system · See more »

## Class (set theory)

In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) that can be unambiguously defined by a property that all its members share.

New!!: Function (mathematics) and Class (set theory) · See more »

## Commutative property

In mathematics, a binary operation is commutative if changing the order of the operands does not change the result.

New!!: Function (mathematics) and Commutative property · See more »

## Compact space

In mathematics, and more specifically in general topology, compactness is a property that generalizes the notion of a subset of Euclidean space being closed (that is, containing all its limit points) and bounded (that is, having all its points lie within some fixed distance of each other).

New!!: Function (mathematics) and Compact space · See more »

## Complex analysis

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers.

New!!: Function (mathematics) and Complex analysis · See more »

## Complex number

A complex number is a number that can be expressed in the form, where and are real numbers, and is a solution of the equation.

New!!: Function (mathematics) and Complex number · See more »

## Complex plane

In mathematics, the complex plane or z-plane is a geometric representation of the complex numbers established by the real axis and the perpendicular imaginary axis.

New!!: Function (mathematics) and Complex plane · See more »

## Computability theory

Computability theory, also known as recursion theory, is a branch of mathematical logic, of computer science, and of the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees.

New!!: Function (mathematics) and Computability theory · See more »

## Computable function

Computable functions are the basic objects of study in computability theory.

New!!: Function (mathematics) and Computable function · See more »

## Constant function

In mathematics, a constant function is a function whose (output) value is the same for every input value.

New!!: Function (mathematics) and Constant function · See more »

## Continuous function

In mathematics, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output.

New!!: Function (mathematics) and Continuous function · See more »

## Correspondence (mathematics)

In mathematics and mathematical economics, correspondence is a term with several related but distinct meanings.

New!!: Function (mathematics) and Correspondence (mathematics) · See more »

## Curve fitting

Curve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints.

New!!: Function (mathematics) and Curve fitting · See more »

## D. C. Heath and Company

D.C. Heath and Company was an American publishing company located at 125 Spring Street in Lexington, Massachusetts, specializing in textbooks.

New!!: Function (mathematics) and D. C. Heath and Company · See more »

## Derivative

The derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value).

New!!: Function (mathematics) and Derivative · See more »

## Differentiable function

In calculus (a branch of mathematics), a differentiable function of one real variable is a function whose derivative exists at each point in its domain.

New!!: Function (mathematics) and Differentiable function · See more »

## Differential equation

A differential equation is a mathematical equation that relates some function with its derivatives.

New!!: Function (mathematics) and Differential equation · See more »

## Direct product

In mathematics, one can often define a direct product of objects already known, giving a new one.

New!!: Function (mathematics) and Direct product · See more »

## Distribution (mathematics)

Distributions (or generalized functions) are objects that generalize the classical notion of functions in mathematical analysis.

New!!: Function (mathematics) and Distribution (mathematics) · See more »

## Division by zero

In mathematics, division by zero is division where the divisor (denominator) is zero.

New!!: Function (mathematics) and Division by zero · See more »

## Empty product

In mathematics, an empty product, or nullary product, is the result of multiplying no factors.

New!!: Function (mathematics) and Empty product · See more »

## Empty set

In mathematics, and more specifically set theory, the empty set or null set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero.

New!!: Function (mathematics) and Empty set · See more »

## Empty sum

In mathematics, an empty sum, or nullary sum, is a summation where the number of terms is zero.

New!!: Function (mathematics) and Empty sum · See more »

## Euclidean division

In arithmetic, Euclidean division is the process of division of two integers, which produces a quotient and a remainder smaller than the divisor.

New!!: Function (mathematics) and Euclidean division · See more »

## Euclidean space

In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and certain other spaces.

New!!: Function (mathematics) and Euclidean space · See more »

## Exponential function

In mathematics, an exponential function is a function of the form in which the argument occurs as an exponent.

New!!: Function (mathematics) and Exponential function · See more »

## Factorization

In mathematics, factorization (also factorisation in some forms of British English) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

New!!: Function (mathematics) and Factorization · See more »

## Fiber (mathematics)

In mathematics, the term fiber (or fibre in British English) can have two meanings, depending on the context.

New!!: Function (mathematics) and Fiber (mathematics) · See more »

## Fibonacci number

In mathematics, the Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence, and characterized by the fact that every number after the first two is the sum of the two preceding ones: Often, especially in modern usage, the sequence is extended by one more initial term: By definition, the first two numbers in the Fibonacci sequence are either 1 and 1, or 0 and 1, depending on the chosen starting point of the sequence, and each subsequent number is the sum of the previous two.

New!!: Function (mathematics) and Fibonacci number · See more »

## Foundations of mathematics

Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics.

New!!: Function (mathematics) and Foundations of mathematics · See more »

## Function of a real variable

In mathematical analysis, and applications in geometry, applied mathematics, engineering, and natural sciences, a function of a real variable is a function whose domain is the real numbers, or a subset of that contains an interval of positive length.

New!!: Function (mathematics) and Function of a real variable · See more »

## Function of several real variables

In mathematical analysis, and applications in geometry, applied mathematics, engineering, natural sciences, and economics, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables.

New!!: Function (mathematics) and Function of several real variables · See more »

## Functional (mathematics)

In mathematics, the term functional (as a noun) has at least two meanings.

New!!: Function (mathematics) and Functional (mathematics) · See more »

## Functional analysis

Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined on these spaces and respecting these structures in a suitable sense.

New!!: Function (mathematics) and Functional analysis · See more »

## Functional decomposition

In mathematics, functional decomposition is the process of resolving a functional relationship into its constituent parts in such a way that the original function can be reconstructed (i.e., recomposed) from those parts by function composition.

New!!: Function (mathematics) and Functional decomposition · See more »

## Functional equation

In mathematics, a functional equation is any equation in which the unknown represents a function.

New!!: Function (mathematics) and Functional equation · See more »

## Functional predicate

In formal logic and related branches of mathematics, a functional predicate, or function symbol, is a logical symbol that may be applied to an object term to produce another object term.

New!!: Function (mathematics) and Functional predicate · See more »

## Functional programming

In computer science, functional programming is a programming paradigm—a style of building the structure and elements of computer programs—that treats computation as the evaluation of mathematical functions and avoids changing-state and mutable data.

New!!: Function (mathematics) and Functional programming · See more »

## Functor

In mathematics, a functor is a map between categories.

New!!: Function (mathematics) and Functor · See more »

## Gamma function

In mathematics, the gamma function (represented by, the capital Greek alphabet letter gamma) is an extension of the factorial function, with its argument shifted down by 1, to real and complex numbers.

New!!: Function (mathematics) and Gamma function · See more »

## Graph of a function

In mathematics, the graph of a function f is, formally, the set of all ordered pairs, and, in practice, the graphical representation of this set.

New!!: Function (mathematics) and Graph of a function · See more »

## Histogram

A histogram is an accurate representation of the distribution of numerical data.

New!!: Function (mathematics) and Histogram · See more »

## History of the function concept

The mathematical concept of a function emerged in the 17th century in connection with the development of the calculus; for example, the slope \operatorname\!y/\operatorname\!x of a graph at a point was regarded as a function of the x-coordinate of the point.

New!!: Function (mathematics) and History of the function concept · See more »

## Homography

In projective geometry, a homography is an isomorphism of projective spaces, induced by an isomorphism of the vector spaces from which the projective spaces derive.

New!!: Function (mathematics) and Homography · See more »

## Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces).

New!!: Function (mathematics) and Homomorphism · See more »

## Hyperbola

In mathematics, a hyperbola (plural hyperbolas or hyperbolae) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set.

New!!: Function (mathematics) and Hyperbola · See more »

## Identity element

In mathematics, an identity element or neutral element is a special type of element of a set with respect to a binary operation on that set, which leaves other elements unchanged when combined with them.

New!!: Function (mathematics) and Identity element · See more »

## Identity function

Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation or identity map or identity transformation, is a function that always returns the same value that was used as its argument.

New!!: Function (mathematics) and Identity function · See more »

## Image (mathematics)

In mathematics, an image is the subset of a function's codomain which is the output of the function from a subset of its domain.

New!!: Function (mathematics) and Image (mathematics) · See more »

## Implicit function

In mathematics, an implicit equation is a relation of the form R(x_1,\ldots, x_n).

New!!: Function (mathematics) and Implicit function · See more »

## Implicit function theorem

In mathematics, more specifically in multivariable calculus, the implicit function theorem is a tool that allows relations to be converted to functions of several real variables.

New!!: Function (mathematics) and Implicit function theorem · See more »

## Inclusion map

In mathematics, if A is a subset of B, then the inclusion map (also inclusion function, insertion, or canonical injection) is the function \iota that sends each element, x, of A to x, treated as an element of B: A "hooked arrow" is sometimes used in place of the function arrow above to denote an inclusion map; thus: \iota: A\hookrightarrow B. (On the other hand, this notation is sometimes reserved for embeddings.) This and other analogous injective functions from substructures are sometimes called natural injections.

New!!: Function (mathematics) and Inclusion map · See more »

## Injective function

In mathematics, an injective function or injection or one-to-one function is a function that preserves distinctness: it never maps distinct elements of its domain to the same element of its codomain.

New!!: Function (mathematics) and Injective function · See more »

## Integer

An integer (from the Latin ''integer'' meaning "whole")Integer 's first literal meaning in Latin is "untouched", from in ("not") plus tangere ("to touch").

New!!: Function (mathematics) and Integer · See more »

## Integral equation

In mathematics, an integral equation is an equation in which an unknown function appears under an integral sign.

New!!: Function (mathematics) and Integral equation · See more »

## Interpunct

An interpunct (·), also known as an interpoint, middle dot, middot, and centered dot or centred dot, is a punctuation mark consisting of a vertically centered dot used for interword separation in ancient Latin script.

New!!: Function (mathematics) and Interpunct · See more »

## Intersection (set theory)

In mathematics, the intersection A ∩ B of two sets A and B is the set that contains all elements of A that also belong to B (or equivalently, all elements of B that also belong to A), but no other elements.

New!!: Function (mathematics) and Intersection (set theory) · See more »

## Interval (mathematics)

In mathematics, a (real) interval is a set of real numbers with the property that any number that lies between two numbers in the set is also included in the set.

New!!: Function (mathematics) and Interval (mathematics) · See more »

## Inverse function

In mathematics, an inverse function (or anti-function) is a function that "reverses" another function: if the function applied to an input gives a result of, then applying its inverse function to gives the result, and vice versa.

New!!: Function (mathematics) and Inverse function · See more »

## Inverse trigonometric functions

In mathematics, the inverse trigonometric functions (occasionally also called arcus functions, antitrigonometric functions or cyclometric functions) are the inverse functions of the trigonometric functions (with suitably restricted domains).

New!!: Function (mathematics) and Inverse trigonometric functions · See more »

## Italic type

In typography, italic type is a cursive font based on a stylized form of calligraphic handwriting.

New!!: Function (mathematics) and Italic type · See more »

## John Wiley & Sons

John Wiley & Sons, Inc., also referred to as Wiley, is a global publishing company that specializes in academic publishing.

New!!: Function (mathematics) and John Wiley & Sons · See more »

## Linear differential equation

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form where,..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of an unknown function of the variable.

New!!: Function (mathematics) and Linear differential equation · See more »

## Linear function

In mathematics, the term linear function refers to two distinct but related notions.

New!!: Function (mathematics) and Linear function · See more »

## List of mathematical functions

In mathematics, some functions or groups of functions are important enough to deserve their own names.

New!!: Function (mathematics) and List of mathematical functions · See more »

## List of types of functions

Functions can be identified according to the properties they have.

New!!: Function (mathematics) and List of types of functions · See more »

## Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point.

New!!: Function (mathematics) and Manifold · See more »

## Map (mathematics)

In mathematics, the term mapping, sometimes shortened to map, refers to either a function, often with some sort of special structure, or a morphism in category theory, which generalizes the idea of a function.

New!!: Function (mathematics) and Map (mathematics) · See more »

## Mathematical analysis

Mathematical analysis is the branch of mathematics dealing with limits and related theories, such as differentiation, integration, measure, infinite series, and analytic functions.

New!!: Function (mathematics) and Mathematical analysis · See more »

## Mathematical induction

Mathematical induction is a mathematical proof technique.

New!!: Function (mathematics) and Mathematical induction · See more »

## Mathematics

Mathematics (from Greek μάθημα máthēma, "knowledge, study, learning") is the study of such topics as quantity, structure, space, and change.

New!!: Function (mathematics) and Mathematics · See more »

## Meromorphic function

In the mathematical field of complex analysis, a meromorphic function on an open subset D of the complex plane is a function that is holomorphic on all of D except for a discrete set of isolated points, which are poles of the function.

New!!: Function (mathematics) and Meromorphic function · See more »

## Monodromy

In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity.

New!!: Function (mathematics) and Monodromy · See more »

## Monotonic function

In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order.

New!!: Function (mathematics) and Monotonic function · See more »

## Morphism

In mathematics, a morphism is a structure-preserving map from one mathematical structure to another one of the same type.

New!!: Function (mathematics) and Morphism · See more »

## Natural logarithm

The natural logarithm of a number is its logarithm to the base of the mathematical constant ''e'', where e is an irrational and transcendental number approximately equal to.

New!!: Function (mathematics) and Natural logarithm · See more »

## Natural number

In mathematics, the natural numbers are those used for counting (as in "there are six coins on the table") and ordering (as in "this is the third largest city in the country").

New!!: Function (mathematics) and Natural number · See more »

## Neighbourhood (mathematics)

In topology and related areas of mathematics, a neighbourhood (or neighborhood) is one of the basic concepts in a topological space.

New!!: Function (mathematics) and Neighbourhood (mathematics) · See more »

## Nicolas Bourbaki

Nicolas Bourbaki is the collective pseudonym under which a group of (mainly French) 20th-century mathematicians, with the aim of reformulating mathematics on an extremely abstract and formal but self-contained basis, wrote a series of books beginning in 1935.

New!!: Function (mathematics) and Nicolas Bourbaki · See more »

## Number

A number is a mathematical object used to count, measure and also label.

New!!: Function (mathematics) and Number · See more »

## Operation (mathematics)

In mathematics, an operation is a calculation from zero or more input values (called operands) to an output value.

New!!: Function (mathematics) and Operation (mathematics) · See more »

## Operator (mathematics)

In mathematics, an operator is generally a mapping that acts on the elements of a space to produce other elements of the same space.

New!!: Function (mathematics) and Operator (mathematics) · See more »

## Ordered pair

In mathematics, an ordered pair (a, b) is a pair of objects.

New!!: Function (mathematics) and Ordered pair · See more »

## Ordinary differential equation

In mathematics, an ordinary differential equation (ODE) is a differential equation containing one or more functions of one independent variable and its derivatives.

New!!: Function (mathematics) and Ordinary differential equation · See more »

## Parabola

In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped.

New!!: Function (mathematics) and Parabola · See more »

## Parameter

A parameter (from the Ancient Greek παρά, para: "beside", "subsidiary"; and μέτρον, metron: "measure"), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc.

New!!: Function (mathematics) and Parameter · See more »

## Parametric equation

In mathematics, a parametric equation defines a group of quantities as functions of one or more independent variables called parameters.

New!!: Function (mathematics) and Parametric equation · See more »

## Partial application

In computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity.

New!!: Function (mathematics) and Partial application · See more »

## Partial differential equation

In mathematics, a partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives.

New!!: Function (mathematics) and Partial differential equation · See more »

## Piecewise

In mathematics, a piecewise-defined function (also called a piecewise function or a hybrid function) is a function defined by multiple sub-functions, each sub-function applying to a certain interval of the main function's domain, a sub-domain.

New!!: Function (mathematics) and Piecewise · See more »

## Placeholder name

Placeholder names are words that can refer to objects or people whose names are temporarily forgotten, irrelevant, or unknown in the context in which they are being discussed.

New!!: Function (mathematics) and Placeholder name · See more »

## Planet

A planet is an astronomical body orbiting a star or stellar remnant that is massive enough to be rounded by its own gravity, is not massive enough to cause thermonuclear fusion, and has cleared its neighbouring region of planetesimals.

New!!: Function (mathematics) and Planet · See more »

## Pointwise

In mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value f(x) of some function f. An important class of pointwise concepts are the pointwise operations — operations defined on functions by applying the operations to function values separately for each point in the domain of definition.

New!!: Function (mathematics) and Pointwise · See more »

## Polynomial

In mathematics, a polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables.

New!!: Function (mathematics) and Polynomial · See more »

## Polynomial ring

In mathematics, especially in the field of abstract algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field.

New!!: Function (mathematics) and Polynomial ring · See more »

## Power set

In mathematics, the power set (or powerset) of any set is the set of all subsets of, including the empty set and itself, variously denoted as, 𝒫(), ℘() (using the "Weierstrass p"),,, or, identifying the powerset of with the set of all functions from to a given set of two elements,.

New!!: Function (mathematics) and Power set · See more »

## Principal value

In complex analysis, the principal values of a multivalued function are the values along one chosen branch of that function, so that it is single-valued.

New!!: Function (mathematics) and Principal value · See more »

## Projectively extended real line

In real analysis, the projectively extended real line (also called the one-point compactification of the real line), is the extension of the number line by a point denoted.

New!!: Function (mathematics) and Projectively extended real line · See more »

## Quadratic form

In mathematics, a quadratic form is a homogeneous polynomial of degree two in a number of variables.

New!!: Function (mathematics) and Quadratic form · See more »

## Quadratic function

In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function in one or more variables in which the highest-degree term is of the second degree.

New!!: Function (mathematics) and Quadratic function · See more »

## Range (mathematics)

In mathematics, and more specifically in naive set theory, the range of a function refers to either the codomain or the image of the function, depending upon usage.

New!!: Function (mathematics) and Range (mathematics) · See more »

## Rational function

In mathematics, a rational function is any function which can be defined by a rational fraction, i.e. an algebraic fraction such that both the numerator and the denominator are polynomials.

New!!: Function (mathematics) and Rational function · See more »

## Real analysis

In mathematics, real analysis is the branch of mathematical analysis that studies the behavior of real numbers, sequences and series of real numbers, and real-valued functions.

New!!: Function (mathematics) and Real analysis · See more »

## Real line

In mathematics, the real line, or real number line is the line whose points are the real numbers.

New!!: Function (mathematics) and Real line · See more »

## Real number

In mathematics, a real number is a value of a continuous quantity that can represent a distance along a line.

New!!: Function (mathematics) and Real number · See more »

## Real-valued function

In mathematics, a real-valued function is a function whose values are real numbers.

New!!: Function (mathematics) and Real-valued function · See more »

## Rectangle

In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles.

New!!: Function (mathematics) and Rectangle · See more »

## Recursion

Recursion occurs when a thing is defined in terms of itself or of its type.

New!!: Function (mathematics) and Recursion · See more »

## Restriction

Restriction, restrict or restrictor may refer to.

New!!: Function (mathematics) and Restriction · See more »

## Ring homomorphism

In ring theory or abstract algebra, a ring homomorphism is a function between two rings which respects the structure.

New!!: Function (mathematics) and Ring homomorphism · See more »

## Roman type

In Latin script typography, roman is one of the three main kinds of historical type, alongside blackletter and italic.

New!!: Function (mathematics) and Roman type · See more »

## Scalar field

In mathematics and physics, a scalar field associates a scalar value to every point in a space – possibly physical space.

New!!: Function (mathematics) and Scalar field · See more »

## Science

R. P. Feynman, The Feynman Lectures on Physics, Vol.1, Chaps.1,2,&3.

New!!: Function (mathematics) and Science · See more »

## Sequence

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed.

New!!: Function (mathematics) and Sequence · See more »

## Set (mathematics)

In mathematics, a set is a collection of distinct objects, considered as an object in its own right.

New!!: Function (mathematics) and Set (mathematics) · See more »

## Set theory

Set theory is a branch of mathematical logic that studies sets, which informally are collections of objects.

New!!: Function (mathematics) and Set theory · See more »

## Set-builder notation

In set theory and its applications to logic, mathematics, and computer science, set-builder notation is a mathematical notation for describing a set by enumerating its elements or stating the properties that its members must satisfy.

New!!: Function (mathematics) and Set-builder notation · See more »

## Several complex variables

The theory of functions of several complex variables is the branch of mathematics dealing with complex valued functions on the n-tuples of complex numbers.

New!!: Function (mathematics) and Several complex variables · See more »

## Sine

In mathematics, the sine is a trigonometric function of an angle.

New!!: Function (mathematics) and Sine · See more »

## Singleton (mathematics)

In mathematics, a singleton, also known as a unit set, is a set with exactly one element.

New!!: Function (mathematics) and Singleton (mathematics) · See more »

## Smoothness

In mathematical analysis, the smoothness of a function is a property measured by the number of derivatives it has that are continuous.

New!!: Function (mathematics) and Smoothness · See more »

## Springer Science+Business Media

Springer Science+Business Media or Springer, part of Springer Nature since 2015, is a global publishing company that publishes books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing.

New!!: Function (mathematics) and Springer Science+Business Media · See more »

## Square (algebra)

In mathematics, a square is the result of multiplying a number by itself.

New!!: Function (mathematics) and Square (algebra) · See more »

## Square root

In mathematics, a square root of a number a is a number y such that; in other words, a number y whose square (the result of multiplying the number by itself, or) is a. For example, 4 and −4 are square roots of 16 because.

New!!: Function (mathematics) and Square root · See more »

## Statistic

A statistic (singular) or sample statistic is a single measure of some attribute of a sample (e.g. its arithmetic mean value).

New!!: Function (mathematics) and Statistic · See more »

## Subgroup

In group theory, a branch of mathematics, given a group G under a binary operation ∗, a subset H of G is called a subgroup of G if H also forms a group under the operation ∗.

New!!: Function (mathematics) and Subgroup · See more »

## Subset

In mathematics, a set A is a subset of a set B, or equivalently B is a superset of A, if A is "contained" inside B, that is, all elements of A are also elements of B. A and B may coincide.

New!!: Function (mathematics) and Subset · See more »

## Support (mathematics)

In mathematics, the support of a real-valued function f is the subset of the domain containing those elements which are not mapped to zero.

New!!: Function (mathematics) and Support (mathematics) · See more »

## Surjective function

In mathematics, a function f from a set X to a set Y is surjective (or onto), or a surjection, if for every element y in the codomain Y of f there is at least one element x in the domain X of f such that f(x).

New!!: Function (mathematics) and Surjective function · See more »

## Topological vector space

In mathematics, a topological vector space (also called a linear topological space) is one of the basic structures investigated in functional analysis.

New!!: Function (mathematics) and Topological vector space · See more »

## Topology

In mathematics, topology (from the Greek τόπος, place, and λόγος, study) is concerned with the properties of space that are preserved under continuous deformations, such as stretching, crumpling and bending, but not tearing or gluing.

New!!: Function (mathematics) and Topology · See more »

## Transformation (function)

In mathematics, particularly in semigroup theory, a transformation is a function f that maps a set X to itself, i.e..

New!!: Function (mathematics) and Transformation (function) · See more »

## Trigonometric functions

In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are functions of an angle.

New!!: Function (mathematics) and Trigonometric functions · See more »

## Tuple

In mathematics, a tuple is a finite ordered list (sequence) of elements.

New!!: Function (mathematics) and Tuple · See more »

## Union (set theory)

In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection.

New!!: Function (mathematics) and Union (set theory) · See more »

## University of Tennessee

The University of Tennessee (also referred to as The University of Tennessee, Knoxville, UT Knoxville, UTK, or UT) is a public sun- and land-grant university in Knoxville, Tennessee, United States.

New!!: Function (mathematics) and University of Tennessee · See more »

## Variable (mathematics)

In elementary mathematics, a variable is a symbol, commonly an alphabetic character, that represents a number, called the value of the variable, which is either arbitrary, not fully specified, or unknown.

New!!: Function (mathematics) and Variable (mathematics) · See more »

## Vector field

In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space.

New!!: Function (mathematics) and Vector field · See more »

## Vector space

A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars.

New!!: Function (mathematics) and Vector space · See more »

## Vector-valued function

A vector-valued function, also referred to as a vector function, is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors.

New!!: Function (mathematics) and Vector-valued function · See more »

## Vertical line test

In mathematics, the vertical line test is a visual way to determine if a curve is a graph of a function or not.

New!!: Function (mathematics) and Vertical line test · See more »

## Virginia Commonwealth University

Virginia Commonwealth University (VCU) is a public research university located in Richmond, Virginia.

New!!: Function (mathematics) and Virginia Commonwealth University · See more »

## Von Neumann–Bernays–Gödel set theory

In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel set theory (ZFC).

New!!: Function (mathematics) and Von Neumann–Bernays–Gödel set theory · See more »

## Well-order

In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total order on S with the property that every non-empty subset of S has a least element in this ordering.

New!!: Function (mathematics) and Well-order · See more »

## Zero of a function

In mathematics, a zero, also sometimes called a root, of a real-, complex- or generally vector-valued function f is a member x of the domain of f such that f(x) vanishes at x; that is, x is a solution of the equation f(x).

New!!: Function (mathematics) and Zero of a function · See more »

## Redirects here:

Ambiguous function, Bivariate function, Domain and range, Empty function, F of x, Function (Mathematics), Function (math), Function (set theory), Function notation, Function of several variables, Function of x, Function specification (mathematics), Function(mathematics), Functional relationship, Functions (mathematics), Funktion, Funktionen, G(x), H(x), Image (set theory), Mathematical Function, Mathematical function, Mathematical functions, Mutivariate function, Output (mathematics), Overriding (mathematics), Overriding union, Y=f(x), Ƒ(x), .

## References

[1] https://en.wikipedia.org/wiki/Function_(mathematics)