Get it on Google Play
New! Download Unionpedia on your Androidâ„¢ device!
Faster access than browser!

O*-algebra and Operator algebra

Shortcuts: Differences, Similarities, Jaccard Similarity Coefficient, References.

Difference between O*-algebra and Operator algebra

O*-algebra vs. Operator algebra

In mathematics, an O*-algebra is an algebra of possibly unbounded operators defined on a dense subspace of a Hilbert space. In functional analysis, an operator algebra is an algebra of continuous linear operators on a topological vector space with the multiplication given by the composition of mappings.

Similarities between O*-algebra and Operator algebra

O*-algebra and Operator algebra have 2 things in common (in Unionpedia): Hilbert space, Quantum field theory.

Hilbert space

The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space.

Hilbert space and O*-algebra · Hilbert space and Operator algebra · See more »

Quantum field theory

In theoretical physics, quantum field theory (QFT) is the theoretical framework for constructing quantum mechanical models of subatomic particles in particle physics and quasiparticles in condensed matter physics.

O*-algebra and Quantum field theory · Operator algebra and Quantum field theory · See more »

The list above answers the following questions

O*-algebra and Operator algebra Comparison

O*-algebra has 7 relations, while Operator algebra has 38. As they have in common 2, the Jaccard index is 4.44% = 2 / (7 + 38).


This article shows the relationship between O*-algebra and Operator algebra. To access each article from which the information was extracted, please visit:

Hey! We are on Facebook now! »