26 relations: Baire space (set theory), Base (topology), Cantor cube, Cantor space, Clopen set, Countable set, Cover (topology), Descriptive set theory, Dimension, Discrete space, Hausdorff space, Inductive dimension, Lebesgue covering dimension, Locally compact space, Mathematics, Metrization theorem, Open set, PlanetMath, Point (geometry), Polish space, Power set, Ryszard Engelking, Separable space, Subspace topology, Topological space, Totally disconnected space.

## Baire space (set theory)

In set theory, the Baire space is the set of all infinite sequences of natural numbers with a certain topology.

New!!: Zero-dimensional space and Baire space (set theory) ·

## Base (topology)

In mathematics, a base (or basis) B for a topological space X with topology T is a collection of open sets in T such that every open set in T can be written as a union of elements of B.We are using a convention that the union of empty collection of sets is the empty set.

New!!: Zero-dimensional space and Base (topology) ·

## Cantor cube

In mathematics, a Cantor cube is a topological group of the form A for some index set A. Its algebraic and topological structures are the group direct product and product topology over the cyclic group of order 2 (which is itself given the discrete topology).

New!!: Zero-dimensional space and Cantor cube ·

## Cantor space

In mathematics, a Cantor space, named for Georg Cantor, is a topological abstraction of the classical Cantor set: a topological space is a Cantor space if it is homeomorphic to the Cantor set.

New!!: Zero-dimensional space and Cantor space ·

## Clopen set

In topology, a clopen set (a portmanteau of closed-open set) in a topological space is a set which is both open and closed.

New!!: Zero-dimensional space and Clopen set ·

## Countable set

In mathematics, a countable set is a set with the same cardinality (number of elements) as some subset of the set of natural numbers.

New!!: Zero-dimensional space and Countable set ·

## Cover (topology)

In mathematics, a cover of a set X is a collection of sets whose union contains X as a subset.

New!!: Zero-dimensional space and Cover (topology) ·

## Descriptive set theory

In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces.

New!!: Zero-dimensional space and Descriptive set theory ·

## Dimension

In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it.

New!!: Zero-dimensional space and Dimension ·

## Discrete space

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense.

New!!: Zero-dimensional space and Discrete space ·

## Hausdorff space

In topology and related branches of mathematics, a Hausdorff space, separated space or T2 space is a topological space in which distinct points have disjoint neighbourhoods.

New!!: Zero-dimensional space and Hausdorff space ·

## Inductive dimension

In the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X).

New!!: Zero-dimensional space and Inductive dimension ·

## Lebesgue covering dimension

In mathematics, the Lebesgue covering dimension or topological dimension of a topological space is one of several different ways of defining the dimension of the space in a topologically invariant way.

New!!: Zero-dimensional space and Lebesgue covering dimension ·

## Locally compact space

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space.

New!!: Zero-dimensional space and Locally compact space ·

## Mathematics

Mathematics (from Greek μάθημα máthēma, "knowledge, study, learning") is the study of such topics as quantity, structure, space, and change.

New!!: Zero-dimensional space and Mathematics ·

## Metrization theorem

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space.

New!!: Zero-dimensional space and Metrization theorem ·

## Open set

In topology, an open set is an abstract concept generalizing the idea of an open interval in the real line.

New!!: Zero-dimensional space and Open set ·

## PlanetMath

PlanetMath is a free, collaborative, online mathematics encyclopedia.

New!!: Zero-dimensional space and PlanetMath ·

## Point (geometry)

In modern mathematics, a point refers usually to an element of some set called a space.

New!!: Zero-dimensional space and Point (geometry) ·

## Polish space

In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset.

New!!: Zero-dimensional space and Polish space ·

## Power set

In mathematics, the power set (or powerset) of any set is the set of all subsets of, including the empty set and itself, variously denoted as, 𝒫(), ℘() (using the "Weierstrass p"),,, or, identifying the powerset of with the set of all functions from to a given set of two elements,.

New!!: Zero-dimensional space and Power set ·

## Ryszard Engelking

Ryszard Engelking (born 1935 in Sosnowiec) is a Polish mathematician.

New!!: Zero-dimensional space and Ryszard Engelking ·

## Separable space

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

New!!: Zero-dimensional space and Separable space ·

## Subspace topology

In topology and related areas of mathematics, a subspace of a topological space X is a subset S of X which is equipped with a topology induced from that of X called the subspace topology (or the relative topology, or the induced topology, or the trace topology).

New!!: Zero-dimensional space and Subspace topology ·

## Topological space

In topology and related branches of mathematics, a topological space may be defined as a set of points, along with a set of neighbourhoods for each point, satisfying a set of axioms relating points and neighbourhoods.

New!!: Zero-dimensional space and Topological space ·

## Totally disconnected space

In topology and related branches of mathematics, a totally disconnected space is a topological space that is maximally disconnected, in the sense that it has no non-trivial connected subsets.

New!!: Zero-dimensional space and Totally disconnected space ·

## Redirects here:

0-dimentional, 0-dimentional space, 0-polytope, 0th dimension, Nildimensional space, Zero dimensional, Zero dimensional space, Zero-dimensional, Zeroth dimension.